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1. INTRODUCTION ~ " | IR

/{{st

Non-linear models arise in many practical applications. Models
baged on Michaelis-Menten differential equations are commonly used in
biochemiatry, bicpharmaceutics, pharmacokinetics and other related
disciplines. These differential equations result in gemeral when com-
partmental models are applied. Linear differential equations usually
suffice for the study of compartmental models with constant rates of
exchange among compartments. However, there are many situations espec-
ially in the study of drug distribution where nonlinearity arises
naturally. Several methods have heen proposed in the literature to fit
constants in such nonlipear models. In an earlier paper, Rustagl and
Singh (1977) used difference equation approach to fit one- and two-
compartment models under the assumptions of linear kinetics.

In this paper, the Michaeliz-Menten elimination scheme is
studied using the difference equation approach. The distribution of
the estimates of the resulting rate coustants is not easily obtainable
In elosed form. Using Monte-Carlo methods, the distributlon of these
constants is derived for the special case of normal errors. Similar
methods can be utilized under different distributional assumptions

for errors in the model.

Applications of Michaelis-Menten equations to pharmacokinetics

has recently been made by Wagner (1973) and Sedman and Wagner (1974).
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They obtained estimates of the rate constants by numerical methods but

; did not provide the distribution of these estimates. It is well known

e

that it is not easy to obtain the distributfion of estimates which are
obtained through numerical techniques. These distributions are, how-
ever, pecessary for statistical analysis, for example, in obtaining the
confidence interval estimates for the rate constants or in comparing

two different rate constants.

2. MICHAELIS~MENTEN MODELS

In a study dealing with enzymc kinetics, Michaelis and Menten
(1913) provided a model for the following one compartment system,

given by Figure 2.1,

Figure 2.1

i1 s it

C 18 the concentration of certain suybstance in the compartment, Km is

the rate of output and Vm is the maximum rate of reaction. This system

Aol A3t o o

can be represented by the differential equation

o Bt

dc v e

a&” "R v (2-1)
m

Consider the difference equation analog of the equation (2.1) assuming

that the process is observed at times tl.tz,...,tn. Using the 3
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approximation for derivatives in the case of unequal time intervals, we

have

C(t1+1)—C(ti) vmc(ci)

- R R (B (2.2)
Ci41 " %y Ky + 0ty

Equation (2.2) is simplified in the following form.

)=c(t,) c(e, .)-C(t,)
{+1 1 byl i

+ V. C(t,) + C(t =0 . (2.3)
141~ % md Ci41 7 %y

C(e
Km t

The model for estimating constants Km and Vm is assumed to be

o, )~C(t,) R LA
utl i i+l i

We agsume for simplicity that u(ti) are random errors with zero means
and variances 012.
The weighted least-squares solution for Km and Vﬁ are obtained

by minimizing the expression,

n-1

2
S(V ,x) = I L |g Cltgyy)-Clty) Cleg )-C(ey)
w’’'m = | T + vmc(ti) + c(ti, < — R
' o e 17 "

2.5)

where gb is the welght for each data point. By taking the derivatives
1

of equation (2.5) with respect to Km and Vm, we get the normal equations

given in (2.6) end (2.7) which provide the least-squares estimates for

K and V .
m m
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. nzl_L {C(tiﬂ) ctz) .o nzfl Lo }C(tiﬂ)—c(:i)
B ge1 % | B ®ie1 % b tamhy

I’ - 2
n-1 C(ti) IC(ti+1) Cti)

+ I ; - -0 (2.6)
=1 %4 tqa7Yy

\

2
oA s U Uit LR 1

B w1 9% C417%y a1 9y
2
-1 (C(t
+ nz (C(ci)) . CC:“'l:c(ti) - 0 2.7
=1 1 141754
Example

Suppose the time-concentration data of alecohol elimination in
human subject Is given in Table 2.1, The data is fitted to (2.4) by

using as the weights, we get Kh = 2.8021 mM, and

(cte?
Vm = 0.0882 mM/min. The ratio vm/Km is 0.0315 min—l. This ratio is

close to the thesratical approximate first-order rate constant for drug

elimination which is known to be 0.0513 min-l, Wagner (1971).

Table 2.1
l Time (min) 5.0  48.0  78.0  105.0  135.0  163.0
l Concen. (mM) 6.9 4.1 2.7 1.4 0.5 0.15

Note that the distribution of the estimates Km and Vm. which
depend non-linearly on C(ti), are not easily cbtainable for given n.
Simulation methods are used later to obtain the properties of these

estimates.
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The characteristicg

of the two-compartment model with
Michaelis-Menten kinetics have been studied by several authors, for

example see Sedman apd Wagner (1974), Suppose a drug 1s injected into

a bilological system intravenously. Thig System can be represented by a

two~compartment open medel where elimination occurs from the first com-

Partment. A schemarfe diagranm is 8iven in Figure 2.2 using nonlinear

kinetics.

- —— ‘_-————‘
KlvV

In;m

Figure 2.2

k b
!: ¢, (t) f == €,(t) |
I.V klz

Here Cl(t) and Cz(t) are the concentrations in the two compartments,

k12 and kzl are the firgr-order rate constants, and RS, Vs have the same

meaning as before, The mathematical model for concentrations results in

the equationg (2.8) and {(2.9).

ac, v

E i sy L R 2-8)
m 1

dc,

qE T kb - kG, (2.9)

partment. From (2.8) we have

dc v

1 n
C W v = - .
125 = 35+ k0, + L +E0 (2.10)
\;_, S
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Substituting (2.10) {into (2.9), we get
bt e (2.11)
de dt K +C, ° -

Differentiating equation (2.8) once more, we have a second-order dif-

ferential equation in terms of cl'

dzc dC

1 2 2 1 .
—d:f(xmml) + [(xn+.c1) (k21-k12) - vmxm]-&?+ klzvm(xmml)cl =0Q. (2.12)

Suppose now that the concentration in a given compartment is

observed at equal intervals of time. For notational conveni-ace ve

drop the subscript in C1 and replace the derivative %%-by C(t+l) - C(t)
2
and g—-cz-:-by c(t+2) - 2(t+l) + C(t) to obtain the difference equation
dc

analog to equation (2.12). We have

[C(t+2) - 26(E+1) +C(O) T [K_+ c(t) 1%+ [c(e+l) - c(e) HIK_+c(t) 12

(kyq=kyp) = VoK P HC(O R +C(O RV, = 0 . (2.13)
The model for estimating the rate conmstants is

[C(t+2) - 26(e+1) +C(E) T[R_+C(2) 1%+ [C(eH1) - () HIR_+ c()]?

(k21-k12) - vmxm} + C(t)'[Km+ c(e) ]kuvm = u(t) (2.14)

vhere u(t) is the error term with zero mean and zppropriate variance.
Notice that the equation (2.14) is a polynomial with degree

three in parameters Km, Vm, k12, and k21 and results in a complicated

Y R
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estimation procedure. With certain additional assumptions, such as
those of some parameters known, nonlinear least-squares method may be
utilized. The uniqueness of the resulting estimates is atill question-

able.

3. ESTIMATION OF RATE CONSTANTS

Several methods of estimation of rate comnstants in pharmaco-
kinetics models are in common use. Numerical procedures leading to
techniques using quasilinearization are due to Bellman and Kalaba
(1965). Also computer programs such ag NONLIN, by Metzler (1969) which
is based on the modification of Gaugs-Newton procedure are commonly
ugsed, We use the difference~equation approach discussed earlier for
obtaining the estimates.

Using Runge-Kutta method, which 1s a part of NONLIN program,
data are generated from the Michaelis-Menten model (2.1) with a given
set of values of constants Km and Vm. A sample of 25 observations is
generated and each value is increased by a standard normal random vari-

ate. The estimates of Vm and Kh are then made using the difference

equations model of the Michaelis-Menten equations as in equation (2.4).

The resulting estimates are given in Table X for one hundred such samples.

The frequency distributions of Km and Vm are given in Tables II

and III. Means and standard deviations for Kh and Vm are

X = 0.056 ¥ = 0.242
B o
s, = 0.0452 s, = 0.0495

P T I W
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To test the hypotheses that the sample of one hundred Eh and
3; arise frow normal distributions, classical chi-aquared test of
goodness-of~fit and Lilliefors test are used, Conover (1971). The
chi-squared values for the samples im and Gn are

x; = 6.454 with 5 degrees of freedom,

xz = 2.516 with 4 degrees of freedom,
n

which are not sigrificant at 0.05 level,

For Lilliefors ncn-parcometric test, the test statistic uysed is

T = Sup |[F(x) - s(x)| ,

x

where F(x) is the standard normal distribution function and S(x) is
the empirical distribution function. The values have been standardized
using the means and standard deviations obtained above. Absolute values
of (F(x)-S(x)) for both samples are recorded in Table I. The maximum
value for Eh occurs at x = 0.23, where S(x) equals 0.53, F(x) equals
0.59, and T is 0.06. The maximum value for Gm occurs at x = -0.56,
wvhere S(x) equals 0.35, F(x) is 0.29 so that T equals 0.06. The maxi-
mum value 0.06 also cccurs at other points, but at no point does the
absolyte difference of S(x) and F(x) exceed 0.06.

The Lilliefors test calls for rejection of our hypotheses at
a=0,2C 1f T exceeds its 0.80 quantile. The critical region 1s
obtained from tables in Conover (1971). The hypotheses are accepted,

and therefore we conclude that the estimates Km and Vm are normally

distributed.
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TABLE I

Km (Km-.056)/.045 S{x)-F(%) Vm (Vi-.242)/.0495 S{(x)=-F(x)
g.0 -1.24 .02 0.0415 =-4.05 .01
0.0 -1.24 .02 0.1407 -2,05 .002
0.0 =1.24 .02 0.1508 -1.84 .002
0.0 ~1,24 .02 0.1567 -1.72 .002
0.0 -1.24 Q02 0.1611 ~1.63 .001
0.0 ~1.24 .02 0.1665 -1.33 .003
0.0 ~1.24 02 0.1797 -1.26 .03
0.0 ~1.24 .02 0.1829 -1.19 .04
¢.0005 -~1.23 01 0.1864 «1.12 -04
0.0027 ~1.18 01 0.1875 -1.10 .04
0.0045 ~1.14 .01 0.1882 -1.09 .03
0.0055 -1.12 .01 0.1883 -1.08 .02
0.0058 ~-1.11 .003 0.1892 -1.07 0L
0.0078 -1.07 .002 0.1895 =-1.06 004
0.0100 -1,02 W01 0.1915 -1.02 .003
0.010 ~1.02 .01 0.1938 -0.97 .006
0.0114 ~Q0.%99 .01 0.1945 ~0.96 .002
0.0123 -0.97 .02 0.2020 -0.81 .03
0.0204 ~0.79 02 0.2037 -Q.77 .02
0.0206 ~0.78 .01 0.2039 -0.77 .02
0.0221 -0.75 . 006 0.2044 -0.76 .01
0.0221 ~0.75 .006 0.2056 -0.74 .009
0.0225 =-0.74 .01 0.2061 -3.73 .003
0.0243 ~0.70 .002 0.2072 -0.70 .002
0.0262 ~0.66 . 004 0.2095 -0.66 .005
0.0295 ~0.59 .01 g.2101 -0.64 .01
0.0299 ~0.58 .01 0.2102 -0.64 .01
0.0305 ~0.56 .01 0.2107 -0.63 .03
0.0309 ~0.56 .01 0.2108 -0.63 .03
0.0318 ~0.54 .01 0.2130 -0.59 .04
0.0325 ~0.52 01 0.2130 -0.59 -04
0.0332 ~0.50 .02 0.2130 -0.59 .04
0.0344 ~0.48 .02 0.2131 -0.58 .06
0.0357 ~0.45 .02 0.2135 -0.58 .06
0.0362 -0.44 .02 0.2144 -0.56 .06
0.0377 -0.40 .03 0.2162 -0.52 .05
0.0379 -0.40 .03 0.2205 -0.43 .04
0.0394 ~0.37 .03 0.2210 -0.42 .04
0.0426 ~0.30 .01 0.2217 -0.41 .05
0.0429 ~0.29 .03 0.2232 -0.38 .05
0.0429 -0.29 .03 0.2264 -0.32 .04
0.0439 ~0.27 .03 0.2329 ~-0.18 .01
0.0449 ~0.25 »03 0.2330 -0.18 .01
0.0497 ~0.14 .004 0.2330 -0.18 .01
0.0499 ~-0.13 .03 0.2350 -0.14 .006
0.0501 -0.13 .03 0.2354 -0.13 .01
0.0503 ~0.13 .03 0.2360 -0.12 . 040

0.0531

~0.06

0.2360

=-0.12

.04

LT Y
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TABLE I (continued)

11

(Km-.OSG)/.OAS S(0-F(® Vm

Km (Y!;;Z&Z)/.Ok95 S(x)-F(x)
0.0558 -0.00 L0 0.2360 ~0.12 .04
0.0567 0.02 .008 0.2375 ~-0.09 .04
0.0583 0.05 .009 0.2378 -0.08 .04
0.0610 0.11 .02 0,2415 -0.01 .02
0.0662 0.23 .06 0.2435 0.03 .02
0.0667 0.24 .02 0.2440 0.04 .03
0.0668 0.24 .02 0.2445 0.05 .03
0.0668 0.24 .02 0.2450 0.06 .04
0.0670 0.24 .02 0.2487 0.14 .02
0.0674 0.25 .02 0.2539 0.24 .01
0.0678 0.26° .01 0.2573 0.31 .03
0.0689 0.29 .01 0.2585 0.33 .03
0.0699 ¢.31 01 0.2595 0.35 .03
0.0740 0.40 .03 0.2601 0.37 .02
0.0758 0.44 04 0.2625 Q.41 .03
0.0764 0.45 .03 0.2673 0.51 .05
0.0769 0.46 .02 0.2675 0.52 .05
0.0805 0.54 .03 0.2707 0.58 .06
0.0806 0.54 .03 0.2710 0.59 .05
0.0824 0.58 .03 0.2741 0.65 .06
0.0827 0.59 .03 0.2747 0.66 .05
0.0841 0.62 .03 0.2759 0.68 050
0.0844 0.63 .02 0.2761 0.69 .05
0.0833 0.65 .02 0.2774 0.72 .04
0.0880 0.71 .03 0.2784 0.74 .03
0.0885 0.72 .02 0.2788 0.74 .03
0.0895 0.74 .02 0.2809 0.79 .02
0.0906 0.77 .01 0.2810 0.79 .02
0.0906 0.77 .01 0.2812 0.79 .02
0.0909 0.77 .01 0.2818 0.80 .008
0.0925 0.81 .001 0.2824 0.82 .004
0.0946 0.85 .002 0.2852 0.87 .008
0.0952 0.87 .01 0.2873 0.92 .01
0.0984 0.94 .006 0.2884 0.94 .006
0.0994 0.96 .001 0.2892 0.95 .01
0.0998 0.97 .01 0.2892 0.95 .01
0.1001 0.98 .02 0.2914 1.00 .009
0.1028 1.04 .01 0.2923 1.02 .01
0.1043 1.07 .02 0.2974 1.12 .003
0.1090 1.17 .01 0.3006 1.18 .001
0.1137 1.28 .01 0.3032 1.24 .003
0.1138 1.28 .01 0.3052 1.28 001
0.1143 1.29 .01 0.3057 1.29 .02
0.1169 1.35 .01 0.3058 1.29 .01
0.1178 1.37 .02 0.3094 1.36 .02
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TABLE I (continued)

!h (Kh-.OSGV.045 S(x)=F(x) | Vln (Vm-.242)/.0495 S(X)-F(X)
0.1201 1.42 .02 0.3114 1.40 .02
0.1206 1.43 .03 0.3161 1.50 .02
0.1222 1.46 .04 0.3233 1.64 .01
0.1232 1.49 .04 0.3248 1.67 .02
0.1303 1.64 .04 0.3250 1.68 .03
0.1311 ~.66 . .04 0.3283 1.74 04
0.1322 1.69 .05 0.3333 1.84 .04
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TABLE II

FREQUENCY DISTRIBUTION OF ﬁm

13

Cumulative
E Relative Relative
m Prequencies Frequencies Frequencies
0 8 0.08 0.08
0.00~0.02 10 0.10 0.18
0.02-0.04 20 0.20 0.38
0.04-0.06 13 0.13 0.51
0.06-0.08 14 0.14 0.65
0.08-0.10 19 0.19 0.84
0.10-0.12 8 0.09 0.93
0.12-0.14 7 0.07 1.0
Total 100 1.0
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TABLE III

FREQUENCY DISTRIBUTION OF Gm

K
m

Cumulative
Relative Relative
Frequencies Frequencies Frequencies

0.00-0.17

0.17-0.20
0.20-0.23

O- 23"0- 26
0.26-0.29
0.29-0.32

0.32-0.35

6 0.06 0.06

11 0.11 0.17
24 0.24 0.41

20 0.20 0.61
23 0.23 0.84
11 0.11 0.95

5 0.05 1.0

Total

100 1.0
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